

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

Sketching Interactive Systems with Sketchify

Z. OBRENOVIC
Eindhoven University of Technology, The Netherlands
AND
J.B. MARTENS
Eindhoven University of Technology, The Netherlands.
__

Recent discussions in the interaction design community have called attention to sketching as an omnipresent
element of any disciplined activity of design, and have pointed out that sketching should be extended beyond
the simple creation of a pencil trace on paper. More specifically the need to deal with all attributes of a user
experience, especially the timing, phrasing, and feel of the interaction, has been identified. In this article, we
propose extending the concept of sketching with a pencil on paper to the more generic concept of fluent
exploration of interactive materials. We define interactive materials as any piece of software or hardware that
represents or simulates a part of the interactive user experience, such as input from sensors, output in the form
of sound, video or image, or interaction with Web services or specialized programs. We have implemented the
proposed concept within Sketchify, a tool for sketching user interfaces. Sketchify gives designers the freedom
to manipulate interactive materials by combining elements of traditional freehand sketching with functional
extensions and end-user programming tools, such as spreadsheets and scripting. We have evaluated Sketchify in
the education of interaction designers, identifying both successful aspects and aspects that need further
improvements.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces; D.2.2
Design Tools and Techniques: User Interfaces; H.1.2 [Models and Principles]: User/Machine Systems

General Terms: Design, Theory

Additional Key Words and Phrases: Sketching, Interaction Design, User Interface Software Tools, Design
Process, Rapid Prototyping

ACM File Format:
OBRENOVIC, Z., AND MARTENS, J.B. 201#. Sketching Interactive Systems with Sketchify. ACM Trans.
Computer-Human Interaction, #, #, Article # (# 201#), ## pages. DOI = 10.1145/1290002.1290003
http://doi.acm.org/10.1145/1290002.1290003
__

1 INTRODUCTION
Sketching is at the heart of design. Many studies of the design practice, such as recent
contributions from Buxton [Buxton 2007], Krippendorff [Krippendorff 2006], and
Moggridge [Moggridge 2007], have called attention to sketching as an omnipresent
element of any disciplined activity of design. Disciplines such as graphical design and
architecture can boast a rich tradition in sketching, and offer courses to students in order
to improve their sketching skills. However, for interaction designers who want to design
new user interfaces, existing sketching techniques are too limited. Buxton has argued that
while it is relatively easy to sketch the physical shape of an interaction device or the
graphical layout of a user interface, interaction designers lack tools that enable them to
sketch the dynamics of the interaction, let alone the overall user experience [Buxton
2007]. For example, pencil and paper provide few means to sketch speech interaction, or
to illustrate interaction scenarios in domains such as ambient intelligence, tangible
interaction, multimodal interaction or pervasive computing.

The identified issue of lack of tools for sketching is also confirmed by our own
experience in the education of students of interaction design. Based on these practical

9

http://doi.acm.org/�

9: 2 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

experiences and on our understanding of existing theoretical contributions, we introduced
a novel approach and tool for sketching, adopting two main premises:
• The primary objective of interaction designers in the early design stage is clarifying

the user experience and the associated user-system interaction [Moggridge 2007].
Interaction designers (and students) need better techniques than those currently
available for sketching such experiences and interactions. As in the case of traditional
sketching, these techniques need to combine speed and freedom of expression, and
need to assist in producing an output that invites discussion.

• Sketching should be extended beyond the simple creation of a pencil trace on paper to
deal with important attributes of the overall user experience, especially time,
phrasing, and feel [Buxton 2007]. Some aspects of specifying interactive system
behavior are beyond freehand drawings and we need tools that can seamlessly
integrate sketching with more traditional (end-user) programming techniques.

To support and explore our view, we have developed Sketchify, a tool that implements
our extension of paper and pencil sketching to the more generic concept of fluent
exploration of interactive materials. Interactive materials can be any piece of software or
hardware that represents or simulates a part of the interactive user experience, such as
input from sensors, output in the form of audio, video or drawings, or interaction with
Web services. Through the manipulation of interactive materials, designers create
interactive sketches, which are rough illustrations of the interaction scenarios or
interaction techniques that they have in mind. With our tool designers can, for instance,
combine elements of freehand sketching with end-user programming, such as
spreadsheets or scripting, needed in order to create an intelligent system behavior.

Figure 1 provides a very simple example of an “interactive sketch” created with our
tool. This example was created by one of our students to illustrate the working of an
“intelligent window”, where a user can see what is going on in another room by
“cleaning” the window with a hand gesture. To create this sketch, a motion detector is
used, where the intensity of motion is mapped to the transparency of the image that
represents the window. This example illustrates several important aspects of our tool.
Firstly, a sketch, as we define it, need not be restricted to a drawing, but can incorporate
any component that helps the designer to develop and show his idea about interaction,
provided that this can be realized in a quick and timely fashion, and that such a sketch is
inexpensive, disposable, and doesn’t contain unnecessary details. Secondly, our tool
allows the designer to sketch the experience that some interaction scenario will bring to a
user by enabling a user, as well as the designer himself, to immediately try out the
intended interaction. While a drawing can, through lines and text, illustrate how the
interaction will occur, it is more insightful and convincing to actually experience how the
transparency of the image changes, that is, how the window “opens”, as a result of the
user gesture. Lastly, we are primarily interested in supporting interaction designers whose
main objective is to design the dynamics of the interaction [Moggridge 2007]. The image
in our example is secondary; what is important is the change of that image. In other
words, in this example the designer is primarily interested in the development of the
mapping from the user gesture to the image transparency as this, rather than the image
itself, may be expected to have a major influence on the user experience.

Sketching Interactive Systems with Sketchify ● 9: 3

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

Fig. 1. In this example, a camera-based motion detector is used to estimate the intensity of the hand motion. The
transparency of the window changes in response to the estimated motion intensity

In the next section we introduce an example scenario to clarify how we envision
sketching in the context of designing novel interactive systems. Next, we present some
existing software tools for sketching and prototyping and discuss why, in our view, they
offer only partial solutions to the requirements imposed by this scenario. From Section 4
onwards we introduce Sketchify, our toolset for sketching interactive systems. We
describe its architecture and its implementation, discuss its benefits and limitations, and
compare it with existing solutions. We conclude with a summary of our contributions and
with plans for future work.

To improve readability of the text, we have moved most implementation details into
four online Appendices (A, B, C, and D). For readers interested in trying out Sketchify,
we provide an open source version of the program, together with some introductory
videos, available at http://sketchify.sf.net/.

2 EXAMPLE SCENARIO
To illustrate our vision about sketching in the context of the design of interactive
systems, we introduce an example scenario, with Anne in the role of a student of
interaction design. Our scenario is based on an analogy to “traditional” paper and pencil
sketching, where a designer quickly draws up ideas, reflects on them and makes changes,
creates variations, and discusses them with colleagues.

Anne is a student at the department of Industrial Design, and she is working on her
final bachelor project. Her goal is to design an “Intelligent Coffee Machine” – ICoM, a
context-aware system that, in addition to making hot drinks, senses the presence of
people, and has secondary functions, such as providing ambient music and lighting. She
has already done user surveys, and has identified, in general terms, the desired
functionality of the system. Specifically, she has concluded that ICoM should support the
following functions:
• Detect the presence of users, and classify their distance from ICoM in two categories.

When one or more persons are within the vicinity of the machine, the system should

http://www.vip.id.tue.nl/sketchpad�

9: 4 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

“express interest” in these people, and when a person comes close to the machine, the
system should “become serious” and offer a menu with available hot drinks.

• When no one is close to the system, it should switch into behaving as an “ambient
box”, providing a discrete lighting and music.

Anne now starts to define the behavior that ICoM should have in order to support the
identified functionality. She opens her interactive “sketchpad”, and starts to “sketch”
elements for the first part of the functionality. Her “sketchpad” enables her to easily and
quickly explore and work with various devices and sensors. Anne does not have a lot of
experience in working with sensing equipment, but she is aware of the general
possibilities offered by sensors, and that detecting the presence of people, which is
required for her scenario, can be achieved in several ways. She, for example, could
consider using RFID sensors, but this would require users to wear RFID tags, which is
probably unrealistic, so she rejects that option. Another possibility would be to use
pressure sensors on the floor or a camera-based computer-vision sensor. Her sketching
tool, for example, offers her an option to integrate a Wii Fit pressure sensor1. She decides
to play with this option, and borrows the Wii Fit Balance Board device from the faculty
service desk. She connects the device to her computer through a Bluetooth link, and starts
the Wii module in the “sketchpad”. Her sketching environment offers her a simple
interface towards the device and various ways to control and visualize data coming from
and going to the device. By inspecting this interface, she sees that, amongst others, the
Wii Fit device updates four variables, each representing different areas in which the user
may be standing. She tries the device herself, observing how the data changes when she
stands on it. This immediately gives her another idea: the Wii Fit does not only detect the
presence of people in front of the ICoM, but also potentially allows alternative ways of
interacting, by stepping or balancing on different parts of the board. Using the freehand
sketching extension of her tool, she quickly creates several drawings representing various
screens of the coffee machine, such as an entry screen, and a screen for selecting the
coffee type and amount of sugar. Her environment enables her to define transitions
between these drawings as a function of sensor variables, and she quickly creates a
simple interactive sketch, where a user can select a coffee type and amount of sugar by
balancing on the Wii Fit board.

She saves the last sketch, and explores some other options for detecting the presence
of people. She attaches a Web camera to her computer, and tries camera based motion
and face detection. The face detector seems to be more promising, as it can tell how many
people are in front of the screen, and the face size can roughly indicate how close they are
to the machine. As the face detector does not tell Anne the distance of people directly,
she has to derive it. Her environment offers her a variety of programming options, but as
she is not an experienced programmer, she decides to use a spreadsheet and to import the
variables for face size within it, estimating the distance by dividing the face size by some
factor. To obtain this factor, she simply tries which face size the sensor gives when she
stands at different distances from the Web camera. She now reuses some freehand
drawings from her first sketch, and creates an interactive scenario, where different
screens appear depending on the estimated distance of the user. When the user is close
enough he can select drinks and other options by clicking on them. She also creates a
version where options can be selected by means of head motions, but quickly sees that
this is not an intuitive way of interaction, and does not pursue it further.

1 http://www.nintendo.com/wiifit/

Sketching Interactive Systems with Sketchify ● 9: 5

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

To add more diversity to her ideas, she also creates several versions of the navigation
interface, creating one version where a user selects hot drink options by speech, using a
speech recognizer and a text-to-speech engine available within the “sketchpad”. She also
creates a version of her sketches that connects to the Google News search web service, so
that the user can read the news on the ICoM display while waiting for a drink to be
prepared.

To define the second part of the functionality, where ICoM works in the “ambient
box” mode, she uses the MP3 player extension available within her sketching platform,
and creates a simple timer that starts the playback of a music item in a list of MP3 files
after some predefined time of inactivity.

Now having several sketches and variations of her ideas ready, she calls some of her
colleagues to try out and discuss these “sketches” before she consolidates her design
decisions and starts to create more advanced and polished prototypes with which she
intends to test the usability and user appreciation of her ideas.

3 EXISTING SOLUTIONS
Our example scenario illustrates the need for a simple yet powerful design environment
that can offer integrated use of various elements, including sensing devices, graphical
editors, and Web services. In this section, we describe some existing solutions, and
discuss their possibilities as well as their limitations when it comes to supporting
applications such as the one described in the example scenario. We start with sketching
on paper, paper prototyping, and screen prototyping, before proceeding to more complex
solutions, such as electronic sketching, and platforms for the rapid prototyping and
programming of interactive systems.

3.1 Sketching on Paper, Paper Prototyping, and Screen Prototyping
To illustrate her ideas about the interaction with the coffee machine, our protagonist
Anne could have created freehand drawings. As most students, Anne has developed her
drawing skills through courses offered at the department of industrial design. Such
courses also cover aspects of communicating the dynamics of interaction by means of
graphical elements such as arrows, textual annotations, or comic-like sequences of
images [Olofsson and Sjölén 2005]. Existing software programs such as Photoshop,
Painter or Gimp can assist Anne in this task, as they support free form sketching using
metaphors based on conventional tools, such as, pen, pencil, eraser or brush.

She could also extend her drawings towards paper prototypes, which have been used
successfully in the design of many interactive products, including computer-based
applications, mobile devices, and Web sites [Grady 2000; Rettig 1994; Snyder 2003]. In
such prototypes, all elements of the interface are sketched, and arrows are used to connect
the screens and to communicate the interaction paths that result from a user activating
specific interaction elements [Pering 2002].

Anne could make her drawings more interactive using screen prototyping techniques,
importing, for example, her images into tools such as Microsoft PowerPoint2, Balsamiq3,
Pencil4 or OmniGraffle5, and animating series of screens to simulate possible paths of
interaction (we discuss more advanced programming techniques, such as Flash, in
Section 3.3).

2 http://office.microsoft.com/powerpoint/
3 http://www.balsamiq.com/
4 http://www.evolus.vn/Pencil/
5 http://www.omnigroup.com/applications/OmniGraffle/

9: 6 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

Paper sketches and screen prototypes can be created with ease and they can be very
effective in a number of situations. However, they can help Anne only in a limited way.
She can easily create the graphical elements of her solutions, such as the shapes that will
be shown on the screen, and she can simulate the sequence of these paper sketches, but
overall interaction, where sensing devices and the dynamics of the responses are also
taken into account, can be described only in very abstract terms. Moreover, as Anne is
not experienced in working with sensing technologies, paper sketching does not allow her
to explore the possibilities and limitations of such technologies. Through exploring
technologies, she can get more concrete ideas about how they may be employed best. In
this respect paper-based sketches cannot help her either.

3.2 Electronic Sketching Systems
In contrast to paint programs, where sketching is used to create images, electronic
sketching systems let the user sketch using an electronic pad and stylus and interpret the
user's strokes in order to create a semantic representation of the sketch [Igarashi and
Zeleznik 2007]. Computer graphics researchers have developed a range of such systems.
Starting from Sutherland’s seminal work on Sketchpad [Sutherland 1963], several pen-
based systems with varying target domains have been proposed to date. Some examples
include SketchCAD [Kara and Shimada 2007], a system for the rapid creation of
freeform curves and surfaces, SketchIT [Stahovich 1998], a system for creating technical
drawings, the SKETCH system for sketching 3D scenes [Zeleznik et al. 1996], and the
“sketching reality” system, used for converting freehand sketches into realistically
looking models [Chen at al. 2008]. Systems such as Teddy [Igarashi et al. 1999], Vteddy
[Owada et al. 2003], SmoothTeddy [Igarashi and Hughes 2003] and ShapeShop [Schmidt
et al. 2005] allow creating even more complex 3D shapes, such as shapes of animals or
human anatomy. Gestures can also be used to define animation, such as in the system for
articulated figure animation [Davis et al. 2003], the Motion Doodles system [Thorne et al.
04], or the K-Sketch system [Davis et al. 2008].

In the domain of user interfaces, there exist several similar systems. SILK [Landay
1996] is an electronic sketching tool for the early design of graphical WIMP-based user
interfaces. SILK enables a designer to draw graphical interface elements and attempts to
recognize widgets in the sketch, automatically generating a default behavior for the
recognized widgets. Using SILK, a user interface designer can create storyboards to
illustrate transitions between sketches. DENIM [Lin et al. 2000] is another electronic
sketching tool, aimed at supporting early web interface design. In a similar way as with
the storyboards in SILK, a designer can sketch navigational links from source widgets to
destination pages. DEMAIS is a multimedia sketch-based editor [Bailey et al. 2001],
which, in addition to structuring pages and defining the navigation structure, also enables
the use of dynamic media such as audio, video, and animation. The system includes a
sketch-based, interactive multimedia storyboard tool through which behavior can be
quickly edited using gestures that are part of an expressive visual language.

Sketch-based systems are a promising new direction for design tools, enabling
designers to create interactive systems with ease, using intuitive and natural pen gestures.
The drawback of sketch-based systems, from the viewpoint of our example scenario, is
that all of the described electronic sketching tools are specialized and domain specific,
and have been successfully used only in inherently graphical domains that have a stable
and well-known set of primitives, such as 2D and 3D graphics, WIMP interfaces, or Web
sites. Anne, for example, could use DENIM to create the forms and the transitions

Sketching Interactive Systems with Sketchify ● 9: 7

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

between the forms that take place when a customer is making his coffee selection, but for
other elements of her solution she would have to resort to alternative tools.

3.3 Platforms for Rapid Prototyping of Interactive Systems
Another path that Anne could pursue is to actually try to implement a simplified version
of her system using rapid prototyping and development tools.

Some existing low-fidelity prototyping environments provide ways to quickly create
prototypes where inputs can be taken from external buttons or sensors. Examples include
Switcharoo for physical interactive products [Avrahami and Hudson 2002]; Calder and
Phidgets6 for physical interfaces [Greenberg and Boyle 2002; Lee et al. 2004; Greenberg
and Fitchett 2001]; Buck prototyping for mobile devices [Pering 2002]; rapid prototyping
for mobile devices using augmented reality technology [Nam and Lee 2003]; DART for
augmented reality systems [MacIntyre et al. 2004], d.tools for physical prototyping
[Hartman et al. 2006], Topiary for prototyping of location-enhanced applications [Li et
al. 2004], Outpost [Klemmer et al. 2001], and Activity Studio for prototyping of ubicomp
applications [Li and Landay 2008].

These low-fidelity prototyping environments may be an excellent choice for
exploration of interactions in various domains. The domain that Anne is addressing,
however, somehow crosses these domains, and requires a variety of sensory inputs and
links to outside services.

There are more professionally integrated environments that can be used to develop
complex interactive applications. For example, Max/MSP7 and the family of related
patcher programming languages such as Pd, Max/FTS, ISPW Max, Max/MSP, or jMax,
provide a graphical development environment for music and multimedia. The Max
program, for example, is highly modular, with most routines existing in the form of
shared libraries. Through these libraries, various input and output modules can be used.
There also exist research platforms such as EyesWeb8 that support the development of
real-time multimodal interactive applications, especially those using expressive gestures.
OpenInterface9 is another such platform, aimed at a component-based development of
multimodal applications. These systems can enable a designer to define a range of effects
using an easy to understand flow-chart metaphor. However, such systems limit a designer
in several ways. While they may be efficient to use in specific domains, such as music or
video, their usage in other domains may not be straightforward. In addition, they often
require too much precise specification, partly due to the fact that they are primarily
developed for advanced prototyping rather than for sketching.

Anne could consider general purpose programming languages, i.e., higher level
languages such as Flash or Processing, or fully featured languages such as Java or C++.
In hands of a skilled programmer such languages are powerful tools, and they provide
lots of support and libraries for implementing all aspects of our interaction scenario.
Programming, however, is usually not appropriate in the early stages of development, and
most interaction designers are not skilled programmers in the first place. Even if Anne
were an experienced developer, programming of her system would still require
significant time and effort. Such investment is simply too high for the intended purpose,
which is the generation of new ideas and the exploration of interaction possibilities.

6 http://www.phidgets.com/
7 http://www.cycling74.com/
8 http://www.infomus.org/EyesWeb/EywPlatform.html
9 http://www.openinterface.org/platform/

9: 8 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

3.4 Summary of the Limitations of Existing Solutions
Existing solutions provide a broad set of possibilities for development of interactive
solutions, and they introduce a range of new ideas and inspirations for development of
new design tools. Many of these ideas have significantly influenced and inspired our
approach. However, having in mind our goals, and summarizing our overview of the
existing solutions, we can make the following observations:
• Lack of (integrated) tools: there are currently no tools capable of supporting the

diversity of technologies and design issues required in our example scenario,
especially not if we add the requirement that such tools need to support rapid, sketch-
like interaction.

• Specialization and limited extensibility of tools: there are lots of specialized tools and
pieces of software that can cover aspects of the desired sketching functionality, but
they cannot be used easily in an integrated way. Extending a particular tool towards
using it in another domain can be very time consuming and expensive and is
moreover not always feasible (especially for tools that are not open source).

We can add two additional factors that influence and limit the broader adoption of
existing tools by interaction designers:
• The diversity of users: interaction designers have very diverse backgrounds and

expertise, and most of them are not developers or programmers. Many existing tools
require a level of expertise that goes beyond what can be expected of most interaction
designers. As more and more (industrial and graphical) designers are entering the
field of interaction design, this aspect can be expected to become increasingly
important. This can results in better and more compelling systems and interactions, as
diverse designers can bring into a design process unique expertise and insights, but
we need to provide them with appropriate technologies to effectively prototype and
interactively sketch their ideas.

• Technology evolution: interaction design is a domain where the technological base is
changing rapidly, and designers need constantly to learn new technologies and tools.
One of the consequences is that even if we create a design tool that can address all
identified technical issues and the diversity of designers, this tool may soon become
obsolete [Myers et. al. 2000]. So the capability of integrating diverse tools may be
more important than the functionality of the tools themselves.

4 SKETCHIFY: SKETCHING AS FLUENT EXPLORATION OF INTERACTIVE
MATERIALS

In this section we present the basic idea and the principles behind Sketchify, an
extensible toolset for sketching interactive systems.

4.1 Design Goals
The starting point for our work has been the ongoing discussion about the role of
sketching in interaction design, especially the need to extend sketching from the creation
of a pencil trace on paper towards dealing with other important attributes of the overall
user experience, such as timing, phrasing, and feel [Buxton 2007]. We aimed at building
a tool that can support designers in sketching novel interactive systems, and in doing so,
we adhered to the following design principles:

Sketching Interactive Systems with Sketchify ● 9: 9

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

• Focus on supporting design of the overall user experience, especially the dynamics
of the interaction. Our main goal was to enable the designer to rapidly define
sketches of interactive scenarios. This is expected to benefit, both the designer and
potential end users, as they can experience the intended interaction at a much earlier
stage in the design process, i.e., well before extensive and detailed prototyping is
attempted. We especially aimed at facilitating the definition of the dynamics and
timing of such interactions.

• Support the exploration of possibilities and limitations of relevant technologies. We
wanted to help designers to gain insight into new technologies through hands-on
experience, so that they can develop more realistic expectations about the
possibilities and limitations of the technologies they were considering. We chose to
bring actual samples of such technologies into the design space and to let designers
use them as part of their sketches.

Having in mind the limitations of existing solutions, and in order to address the diversity
of designers and the pace of technology change, we also kept some additional goals in
mind:
• Support more diversity and extensibility. We aimed at providing a palette of

alternative solutions from which designers can chose those elements that best match
their skills and tasks. Meanwhile, we aimed at our solution being open in the sense
that is should be relatively easy to add new tools and environments as they arise.
This point of view was inspired by existing findings on how interaction designers
actually use their tools. Stolterman et al., for example, described an interaction
designer as a craftsperson, “someone who picks and chooses tools freely based on the
situation and grounded in a judgment of overall benefits from using a specific tool.
… ‘benefits’ have to do with so diverse aspects as the time available, the level of
skill and mastery required, external pressure about standards, personal style of
expression, etc” [Stolterman et al. 2008].

• Provide orchestration and synergetic use of tools. A crucial challenge when
supporting sketching is how to provide coordination between the diverse tools that
are available to stimulate the development of ideas. We kept the fluidity of sketch-
based interaction in mind during development of the interaction with our own tool.

• Better support for reuse of existing environments. Instead of focusing on building yet
another (specialized) sketching tool, which could soon become outdated, we aimed at
supporting designers in reusing their existing tools10 and skills. Several design
studies have indicated that interaction designers use rather different tools than the
ones that HCI researchers are currently building [Stolterman et al. 2008; Stolterman
2008].

10 To get a brief impression about the number of such available tools, visit www.dexodesign.com/

2008/11/07/review‐16‐user‐interface‐prototyping‐tools/, for a list of user interface prototyping tools, or
ACM Transactions on Graphics web site (tog.acm.org/resources/Software.html), for a comprehensive list
of computer graphics software tools.

9: 10 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

4.2 Conceptual Model
Sketchify implements our concept of fluent exploration of interactive materials by
combining several existing and proven approaches, including freehand sketching, end-
user programming, and I/O services. Figure 2 illustrates the conceptual framework of
Sketchify. It distinguishes two groups of components:
• Tools that help a designer to create or bring into a design space interactive materials

and services, for instance through connections to simplified input/output (I/O)
software and hardware services or links to external prototyping environments.

• Tools that enable a designer to sketch interaction by rapidly assembling these
interactive materials, using freehand sketching, various forms of end-user
programming, or paradigms already supported in available tools.

Fig. 2. Sketchify combines free-hand sketching with support for state transitions and animation, end-user
programming, and I/O services. Sketchify also offers the possibility to exchange information with existing
software environments and simple hacking techniques. Blackboard architecture of globally available variables
is used to connect all elements.

4.3 Integration and Variables
To integrate all elements of our solution, and to enable their orchestration and synergetic
use, we applied a loosely coupled coordination model, where all elements of Sketchify
communicate indirectly by exchanging messages through a centralized repository of
variables. Alternatively, the tools can also communicate through files and through the
system clipboard. Sketchify runs a blackboard server with a simple repository of named
slots, called variables, enabling external applications to update and read variables using

Sketching Interactive Systems with Sketchify ● 9: 11

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

one of the many available communication interfaces. We reused components from the
Adaptable Multi-Interface COmmunicator (AMICO) project (see Appendix B for details)
to implement this server. Variables provide a simple and uniform abstraction mechanism,
enabling a designer to work with very diverse elements using the same set of operations.
Properties of sketch elements, such as their position or transparency, or user actions such
as item selections, can be mapped to blackboard variables. Spreadsheets or scripts can
subsequently read, process, and update these variables. I/O services can receive
arguments and send back results through such variables (Figure 3). Lastly, through
extension mechanisms other platforms can update, read or register for the notification of
variables.

Fig. 3. An example of the communication among diverse elements of Sketchify through variables. In this
example, a speech recognizer updates the variable “speech-command” with the recognized word. Within a
spreadsheet, this variable is read, and the variable “tts-input” is updated in response. Update of this latter
variable is propagated to a text-to-speech engine that pronounces the given text.

Our main motivations for using this abstraction were flexibility and simplicity. Untyped
data structures, similar to our variables, have been widely used in other domains where
heterogeneous applications need to work together [Edwards 2005]. In its basic ideas, the
Sketchify middleware is similar to other loosely-coupled and notification architectures,
such as Elvin [Fitzpatrick 1999], and Lotus PlaceHolder [Dey 1999], as well as to
tuplespace systems such as Linda [Gelernter 1985], iROS’s EventHeap coordination
layer [Johanson et al. 2002], and JavaSpaces [Freeman et al. 1999; Waldo 2000].
 Sketchify variables are also easily manageable by end users, as the concept of a
single-address variables space is already familiar to many users through system variables
and properties tables. This is confirmed by our initial studies with less-experienced users
and students, which showed that such concept is indeed easy for them to understand. By
simply reading, writing and modifying the variables in a spreadsheet like interface, users
can, for example, directly try out and explore the basic functionality of interactive
services without the need for advanced programming skills.
 One of the main limitations of the Sketchify middleware is that variables can only
contain textual data, and Sketchify modules cannot exchange images or binary objects
through variables. However, it is possible to “hack” around these limitations by
exchanging links to image files through variables, or by serializing graphical objects with
textual or XML representation, as Sketchify can render an HTML and SVG encoded
content.
 In addition to exchanging messages through variables, tools can also communicate
through files and through the system clipboard. For example, our freehand sketching
environment saves graphical elements of sketches into image files that can subsequently

9: 12 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

be opened in most existing image manipulation programs. Through the system clipboard,
images or text can be copied between our environment and many others.

5 INTRODUCING INTERACTIVE MATERIALS
We currently support three groups of tools that help designers to bring interactive
materials into the design space, i.e., I/O services, links to external development
environments, and simple hacking techniques.

5.1 I/O Services
With I/O services, designers can introduce in their sketches real but “trimmed down”
functionality of input or output devices and software components from various domains.
We have incorporated many different services within Sketchify, including text-to-speech
engines and speech recognizers, Web services (such as the Google spelling checker and
search engine), Phidgets, Arduino, semantic services (such as the Wordnet definition
service), camera-based face and motion detectors, MP3 and MIDI players, Wii Remote,
and many others. Appendix D provides a complete list of the I/O services that are
currently supported by our platform.
 I/O services can bring within the reach of the designer a huge number of available
software and hardware components. In order to accomplish this, we build on our previous
work for integrating heterogeneous software components, where we used a service
oriented approach11 to connect components written in different languages [Obrenovic and
Gasevic 2007]. In essence, our I/O services are standalone applications that Sketchify
runs as background processes, and which connect to Sketchify through one of the many
supported network interfaces, updating and reading variables. Our services are simplified
as we usually do not map the full functionality of the component, but only its most
representative parts.

Table I. Two I/O services from the domain of speech interaction, and the variables they
use. The designer sees and interacts with these services only through these variables,
while Sketchify hides the complexity of the service execution.

I/O Service Direction Variables Variable Description

FreeTTS
text-to-speech
engine

tts-input Text to be pronounced.

 tts-status Status of the engine: ‘loading’, ‘ready’, ‘talking’

Sphinix-4
speech recognizer

speech-command Recognized phrase

 sphinix4-status Status of the engine: ‘loading’, ‘ready’,
‘recognizing’

From the designer’s point of view, Sketchify offers a simple interface to start and stop
services, hiding the complexity and diversity of technologies that an I/O service may use,
and providing a simple and uniform variable-based interface towards them (Table I). In
this way, we can bring components from various domains within the reach of the
designer, allowing a designer to directly experience possibilities and limitations of
technologies, without relying on programming skills.

11 We define a software service as a self‐contained functional unit in which service consumers interact with

the service through a well defined interface. In this model, the consumer does not know (or care) "how"
the service implements the requested action ‐ only that the service performs "what" is defined by its
published interface.

Sketching Interactive Systems with Sketchify ● 9: 13

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

5.2 Links to External Development Environments
Another way to bring into a design space examples of interaction modalities is to reuse
components and examples from environments that are already used for the development
of interactive systems. Many existing development and rapid prototyping platforms
enable designers to define elements for user interaction. Such platforms come with lots of
existing examples that can provide a good starting point for the exploration of novel
interaction scenarios. In order to allow the designer to exploit the potential of these
platforms, we currently support links towards several of them, including:
• Max, MSP and Jitter12, a high-level graphical environment for signal processing and

music creation. The support of this platform for hardware devices and signal
processing, for instance, is highly appreciated by our design students. This
environment has been integrated using a Max/MSP Java extension mechanism that
allows connecting Sketchify using Java network libraries. More specifically, we
introduced two expressions, one for reading Sketchify variables, and another one for
updating them.

• EyesWeb13 is a platform for interactive video processing. We integrated the
environment using existing EyesWeb network components.

• Flash is an environment for the creation of interactive and animated (Web)
applications. It is especially popular because of its powerful interactive graphics
support. We created a simple library that builds on Flash XML/TCP support in
order to connect Flash applications to Sketchify.

• Programming languages such as Processing, Java, C++, and C# are also supported.
In these cases we created simple libraries on top of existing support of these
languages for TCP and UDP protocols.

In all cases, we have extended the environments with remote access to the Sketchify
variables, enabling external applications to interactively read and update these variables.
For example, Figure 4a shows a screenshot of an EyesWeb example that processes
human motion in real time, detecting the position and the center of gravity of a human
body within the picture. Using an EyesWeb network sender component enables us to
export the result of this processing by means of updates of Sketchify variables. In this
way, we have been able to create sketches that illustrate how human motion can be used
in interaction, for example, to control a character in a game or to control the playback of
music in an MP3 player. Figure 4b shows another example where an interactive control
from the Max/MSP environment is used to update Sketchify variables. In this case, the
MIDI keyboard control updates the variable “max-note” with a number representing the
note being pressed. The available links between the development platforms and our
blackboard of variables allow a designer to use the development paradigms supported by
the former tools while manipulating elements of his solution. For example, Figure 4c
shows how the Max/MSP flowchart syntax can be used to define the behavior illustrated
in Figure 1. In this example, we first read the Sketchify variable “motion-intensity”,
process it with Max/MSP expressions, and send the result of the processing back to
Sketchify, updating the variable “transparency”.
 While our main goal has been to bring already existing functionality of development
environments into the design space of Sketchify, designers could also use Sketchify as a

12 http://www.cycling74.com/
13 http://www.infomus.dist.unige.it/EywIndex.html

9: 14 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

supplement to such development environments, using Sketchify to add elements that
these platforms do not support themselves, such as a text-to-speech engine or a speech
recognizer.

(a) Real-time processing of human motion to detect position and the center of the body in EyesWeb software

(b) Using Max/MSP graphical cotrols

(c) Max/MSP flowchart

Fig. 4. Connecting the EyesWeb (a) and Max/MSP (b) and (c) environments with Sketchify.

5.3 Simple Hacking Techniques
To integrate pieces of software that do not have a programmable API, and are not
available as open-source components, we support some of the techniques used by
hacking and mashup communities [Hartmann et al. 2008]. Sketchify includes several of
such mechanisms, such as:
• Screen scraping, a technique based on parsing of a rendered user interface to gather

data. In Sketchify, we enable designers to analyze and extract any part of a Web page
in HTML or XML (such as RSS) formats.

• Screen capturing, a technique to dynamically bring any part of the screen as a part of
the sketch, including output of video players. In Sketchify, such captured part can be
manipulated and transformed as any other graphical object.

• Screen poking, a technique based on generating synthetic mouse and keyboard events
computationally.

For example, Figure 5 illustrates using screen capturing in combination with screen
poking, created by one of our student to illustrate a new interaction with a car navigation

Sketching Interactive Systems with Sketchify ● 9: 15

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

system. Two regions within the Sketchify sketch shown on the first screen dynamically
capture part of the second screen, where an interactive map is shown in a Web browser.
Mouse clicks on specific graphical regions in the sketch are mapped to mouse clicks for
the application shown on the second screen. These mouse clicks are used to navigate
through the map.

Fig. 5. Using screen capturing in combination with screen poking to illustrate a new interaction with a car
navigation system. A part of the Sketchify sketch on the first screen dynamically captures part of the second
screen, where a Web browser with the Google maps application is running. Mouse clicks on the graphical
regions in the sketch are mapped to mouse clicks in the application on the second screen, to zoom in and out
and to move the map.

6 MANIPULATING INTERACTIVE MATERIALS THROUGH FREEHAND
SKETCHING AND END-USER PROGRAMMING

As discussed, we provide several ways for manipulating interactive materials, including
freehand sketching and various end-user programming paradigms. The main innovation
in our support for freehand sketching and end-user programming is adding the link to
Sketchify variables. Through this link, elements of freehand sketches, spreadsheet
formulas or script code can obtain access to various input and output devices, outside
services, etc. On top of that, we also introduce specific support for controlling the
dynamics of the interaction.
 We first describe our freehand sketching environment, and then our support for end-
user programming. Appendix A provides more details about the former, while Appendix
C gives more details about the latter.

6.1 Freehand Sketching
With our support for freehand sketching, we want to exploit the freedom and
expressiveness of pen-based gesturing. Our freehand sketching environment serves two
functions. First, it facilitates the creation of the graphical elements that are part of an
interactive solution. Second, it plays a key role in defining the dynamics of the interaction
through sketch transitions, capturing of user events, and graphical transformations.
Especially the latter aspect needs some explanation, as it is the most novel element of our
solution.

9: 16 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

 From a designer’s point of view, the environment looks very similar to a simple
image editor, with additions for working with variables and with support for specialized
tools, such as timers, which are useful when controlling the dynamic behavior of the
interaction. Our environment supports standard options for free-hand drawing, including
setting stroke parameters, such as width and color. Our platform offers a limited number
of colors and image manipulation options as this was considered to be sufficient in the
conceptual stage of design. However, Sketchify can be configured so that, with a single
mouse click, a user can open a sketch image in a more advanced image manipulation
program, such as Adobe Photoshop. Next to the main drawing layer, we also provide an
annotation layer, where designers can draw on top of the main sketch, without affecting
it. This latter feature is expected to be especially useful when discussing a sketch with
other designers or end users.

Fig. 6. An example of a freehand sketch created with Sketchify. In this example the sketch contains a
background image, created with our freehand drawing tool, and three active regions that capture user mouse
events and present additional graphics.

Our freehand sketches consist of two types of elements: inactive elements (also called
background images) and active regions (Figure 6). A background image is created by
means of pen strokes or can be imported from an image file. An active region is a
rectangular part of the sketch that can contain drawings, text or images. Active regions
can capture mouse (or pen) events and can update variables in response to such events.
They can also be graphically transformed (translated, rotated, skewed) in response to
updates of variables.

6.1.1 Defining Interaction through Transitions among Sketches
One way of defining interaction within Sketchify is by creating transitions between
sketches. Linking sketches and defining conditions for transitions between them is a key
functionality of our system. In its simplest form, Sketchify can define transitions in the
same way as screen prototyping tools do, i.e., in response to mouse clicks and keyboard

Sketching Interactive Systems with Sketchify ● 9: 17

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

events. Figure 7 (a, b, and c) illustrates this by means of a simple example that consists of
three sketches, each representing one screen of the interface14. The start screen (a) has
two active regions that respond to mouse clicks. When a user clicks on the first (top) or
second (bottom) active region a transition is initiated to sketch (b) or sketch (c),
respectively. The second sketch (b) also has one active region, enabling the user to return
to the start screen (a). The system automatically generates and displays a state transition
diagram, which helps the designer to get an overview of the available sketches and the
possible transitions between them (d). State transition diagrams are similar to the
storyboards used in electronic sketching systems, but in our approach they are a side
result of sketching, i.e., they are created without requiring any explicit action on the part
of the designer.

(a) Start screen

(b) The screen for a good answer

(c) The screen for a bad answer

(d) The generated state transition diagram

(e) Defining links between sketches so that a
speech-recognizer can trigger transitions from
sketch (a) to sketches (b) or (c).

(f) Defining an action on entry of sketch (c), which
causes the text-to-speech engine to pronounce the
specified text.

Fig. 7. Simple example that illustrates sketching with state transitions. The start screen (a) has two active
regions that capture mouse clicks. When a user clicks on the first active region (top) a transition to the second
sketch (b) initiated, while a click on the second region initiates a transition to sketch (c). The second sketch (b)
also has one active region, enabling the user to return to the start screen (a). Transitions can also be triggered by
variable updates (e), while a transition to a sketch can cause the update of a variable (f).

14 The example is based on the flip‐book animation illustration from [Buxton 2007, page 299]

9: 18 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

6.1.2 Presenting Variables through Active Regions
The support for state transitions, as described in the previous section, only allows the
sketching of interaction at a relatively high level, where each interaction state is identified
by an individual sketch. Through the combined use of active regions and variables,
however, an individual sketch can also become “alive” and animated.
 Active regions can be used to dynamically visualize data as we can control many
properties of such active regions through variables, including their textual label, the path
to the image file that they are associated with, or their geometrical properties such as
position, orientation and size. Figure 8a shows how the values of four numerical
variables, which are updated in response to calculations that are performed within a
spreadsheet, are converted into textual labels for active regions that are part of a freehand
sketch. Figure 8b illustrates how the position of a face, as estimated by a face detector,
can be mapped to the position of an active region.
 Active regions can be constrained in terms of their maximum and minimum position
and orientation. It is also possible to constrain the motion of an active region to a
sketched trajectory. When such constraints are imposed, the position of the region can
also be specified in relative terms, stating, for example, that the region should be
positioned midway along the trajectory. An active region can also signal overlap with
other regions and can trigger variable updates accordingly. In this way, dragging one
active region on top of another one may, for instance, trigger the transition to another
sketch.

(a)

 (b)

Fig. 8. Presenting variable values within sketches through updating the textual labels of active regions (a) or by
translating an active region (b).

Sketching Interactive Systems with Sketchify ● 9: 19

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

6.1.3 Updating Variables based on User-Triggered Events
Active regions can update variables in response to user actions, i.e., they can react to
characteristics of mouse motion (i.e., the distance, speed and direction of movement) and
mouse button events. By default, mouse dragging in combination with a left button press
is mapped to the translation of an active region, while mouse dragging in combination
with a right button press is mapped to the rotation of an active region.
 Figure 9a illustrates this functionality by means of a simple interactive sketch of a
children’s audio book. On top of a background image, several transparent active regions
are defined that capture mouse clicks, updating, in response, a variable “tts-input” with an
a priori defined text. Update of this variable causes a text-to-speech engine to pronounce
the given text. Figure 9b illustrates another example, where the orientation of an active
region is mapped to the volume control of an MP3 player, enabling a user to control the
volume by rotating the active region.

(a)

(b)

Fig. 9. Mapping mouse button clicks (a) and mouse movements (b) to variable updates that
trigger interactive events, in this case output of the text-to-speech service, and changing the
volume of the MP3 player.

6.1.4 Sketching as a Visual Coordination Language
Active regions can be connected to more than one variable, and the update of any of the
connected variables will result in an update of all associated variables. Therefore, active
regions can be used to connect variables in a simple and intuitive way. Figure 10 shows
how this type of mapping can be used as a visual language to connect the motion detected
by a Wii accelerator to the volume of an MP3 player.

9: 20 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

Fig. 10. Using graphical transformations as a visual coordination language: mapping the output
of a Wii remote accelerator to the rotation of an active region in the sketch, and subsequently
mapping this rotation to the volume control of an MP3 player.

6.1.5 Defining Trajectories and Timers through Gestures
Sketchify exploits gesturing not only as a drawing modality, but also as a way to define a
range of interactive effects. As stated before, the motion of a region can be restricted to
a freehand sketched trajectory (Figure 11). Next to using gestures to defining trajectories,
they can also be used to create timers with specific timer curves (see Appendix A for
details). This means that such a timer can repeat the timing (velocity as a function of
time) in the original gesture. In this aspect, Sketchify is inspired by the early work of
Ronald Baecker and his GENESYS system for picture-driven animation [Baecker 1969a,
Baecker 1969b].

Fig. 11. Using a gesture to define the trajectory of an active region. Sketchify records the position as well as the
velocity and acceleration of a gesture.

6.2 End-user programming
In order to define rich interactions, designers also need complex ways of influencing the
behavior of sketches, for instance, by means of testing conditions, doing simple
calculations, or creating sequences of actions. In many interaction scenarios, such as in
speech applications, the sketches may not have any visible elements and the sketch
behavior becomes the only “object” actually being designed. Having in mind that most
designers are not experienced programmers, and that there is a huge diversity between
designers, we decided to connect our environment to a range of end-user programming
tools which are likely to be accessible and usable for designers [Stolterman et al. 2008].
 In Sketchify, spreadsheets and scripting languages can be used to quickly outline the
behavior of sketches. Spreadsheets and scripts are proven, highly productive and simple

Sketching Interactive Systems with Sketchify ● 9: 21

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

to learn and use end-user development paradigms [Obrenovic and Gasevic 2008;
Obrenovic and Gasevic 2009]. We currently support OpenOffice.org CALC spreadsheets,
and several higher-level scripting languages including Javascript, Python, BeanShell,
Groovy, Ruby, TCL, Sleep, Haskell, and Prolog.
 In all cases, existing end-user development solutions were extended with
mechanisms to update and read Sketchify variables, to receive, cause or process
interaction events (Appendix C). Designers can use any of these individual end-user
programming tools, or can combine them, describing, for example, a part of the behavior
in spreadsheets, and another part in a script. Figure 12, illustrates how a simple “echo”
behavior (on update of one variable, another variable is updated with the same value) can
be accomplished with both spreadsheet formulas, and simple script code in six different
scripting languages.

Echo function Spreadsheets implementation

Javascript implementation Python implementation
function variableUpdated(name, value) {
 sketchify.update(name + " -echo", “value is ” +
value);
}

def variableUpdated(name, value):
 sketchify.update(name + “-echo”, "value is " +
value)
 return

BeanShell implementation Ruby implementation
void variableUpdated(String name, String value,
String oldValue) {
 sketchify.update(name+"echo","value is " +
value);
}

include Java

def variableUpdated(name, value)
 Java::Sketchify::Variable.update(name + '-echo',
name + ' = ' + value)
End

Prolog implementation Sleep implementation
variable(Name,Value) :- sketchify _update("prolog-
echo",Value).

sub variableUpdated {
 $name = $1; $value = $2;
 sketchify_update("$name-echo", "value is $value ");
}

Fig. 12. Examples of spreadsheets formulas and simple scripts written in different languages. All examples
implement the same “echo” function: on update of one variable, another variable is updated with the same
value.

Figure 13a illustrates how spreadsheets and scripts can be used in combination with I/O
services and freehand sketching in order to create a simple interactive sketch for the
scenario as described in Section 1. The motion detector service tracks the intensity of the
user’s motion in front of the camera, and updates the variable “motion-intensity”. This
variable is passed to a spreadsheet that contains additional formulas to process this
variable, more specifically, to map the motion intensity value into the range from 0.0 to
1.0. This derived value is passed into the new variable “transparency”, and the
transparency of the freehand sketch responds to this variable. As a result, if the user is not
moving, the image is invisible (completely transparent); the more she or he moves, the
less transparent and more visible the image becomes. Figure 13b also shows how the
same logic could be defined using a script instead of a spreadsheet.

9: 22 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

(a) Interactive sketch with the spreadsheet logic

(b) Javascript alternative for spreadsheet code

t = parseFloat(sketchify.get("motion-intensity")) / 5000;

sketchify.update("transparency", t > 1 ? "1" : "" + t);

Fig. 13. Implementation of the interaction sketch described in Section 1. The logic behind the sketch can
be manipulated through spreadsheet formulas (a), or by means of a script (b).

Our support for end-user programming also allows for creating interactive sketches
without graphical elements. For example, to sketch speech interaction, we may use a
spreadsheet containing only a speech recognizer and a text-to-speech engine. The
example presented in Section 4.2.2 (Figure 3), for instance, illustrated such an interactive
sketch.

7 CASE STUDIES
Sketchify has been employed in several educational activities at the Department of
Industrial Design of the Eindhoven University of Technology. We have collected
valuable feedback about benefits and limitations of Sketchify during these activities,
which has helped us to obtain a more realistic impression of how Sketchify can be used
most advantageously. We present three case studies, describing usage of Sketchify in a
group student project, in an individual student project, and in a course with 12
undergraduate students of industrial design.

7.1 Case Study 1: The “Snoet” Project
The first case study describes sketching with Sketchify by a group of three first year
students (in their second semester). We selected this case to illustrate how our platform
can facilitate a sketch-like exploration of ideas through the combined usage of
spreadsheets and I/O services, i.e., even without involving freehand drawings.
 The students were working on a product to help children in developing a healthy
sleeping rhythm. They chose to use Sketchify in the last two weeks of their project, when
they needed to come up with ideas on how to implement the imagined functionality of
their system. They were learning to use Sketchify for the first time during this period. We
observed several sessions in which they used Sketchify, we read their final project report,

Sketching Interactive Systems with Sketchify ● 9: 23

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

visited the exhibition were they presented their results, and asked them for additional
details about their usage of Sketchify.
 In the initial part of their project, following a literature review and some user studies,
the students had identified the basic functionality that their product should have: the
product should be able to detect if a child is awake, and then do some action to stimulate
the child to fall asleep again, such as playing a song or playing a prerecorded message
from the parents. The students, however, did not have any previous experience in
working with sensing technologies, and they had only very basic knowledge about
scripting languages and spreadsheets.
 Before they came across Sketchify, their initial ideas included usage of EEG and
biosignals, but they soon realized this to be unrealistic and too expensive. After being
introduced to Sketchify in an informal meeting, they got interested in its usage as it could
provide them with access to cheaper and more widely available camera-based detection
techniques, which they thought could be useful for their purposes.
 Their first usage of Sketchify was to learn how a camera-based detector works. They
used a motion-detector service available within Sketchify, and observed how the values
changed when they moved objects or their body in front of the camera. They imported the
value that represents the motion intensity into a spreadsheet, where they defined a simple
threshold-based sleep detection mechanism. Figure 14 shows their first “sketch”. Even
though it took them only ten minutes to create this solution, it has all the element of their
initial idea. Their design space consisted at that moment of two parameters, a “motion-
intensity” variable, which they manipulated by producing motion in front of the camera,
and a threshold value which defined the transition between the “awake” and the “sleep”
state based on the intensity of the motion.

Motion Detector Service Variables Spreadsheet

motion-intensity

=VALUE(SKETCHIFY_READ(“motion-intensity”))
=IF(A1>10000;”awake”;”sleep”)

Fig. 14. First “sketch” of a motion-based sleep-detector system.

After trying out this first sketch, they soon realized that the momentary motion value did
not constitute robust information about sleep activity. They agreed that they needed an
aggregate intensity of motion over some time period. The ability of our platform to
serialize variable updates proved very useful, as they were able to derive several variables
based on sequential updates of the motion intensity variable. As they were not sure what
kind of processing was necessary, they started by importing serialized values of the
motion detector into the spreadsheet. In the spreadsheet they experimented with several
statistical functions that processed cells, starting with a simple averaging function. Figure
15 shows their new “sketch”. Their design space now included additional parameters,
such as a number of variables corresponding to restricted values of the motion detector,
and statistical functions that derive aggregate values. Their exploration of this sketch
revealed this to be a promising direction to pursue, as high-motion intensity over longer
periods is more likely to reflect the “awake” state than a short period of intensity. They
added a MIDI player service to play different notes in response to the threshold value
being exceeded.

9: 24 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

Motion Detector Service Variables Spreadsheet
motion-intensity-1
motion-intensity-2
motion-intensity-3

…
motion-intensity-10

=VALUE(SKETCHIFY_READ(“motion-intensity-1”))
=VALUE(SKETCHIFY_READ(“motion-intensity-2”))
…
=VALUE(SKETCHIFY_READ(“motion-intensity-10”))
=AVERAGE(A1:A10)
=STDEV(A1:A10)

Fig. 15. Slightly more advanced “sketch” of a motion-based sleep-detector system.

The students subsequently focused on how their solution could be made to work in dark
conditions. They were, of course, aware that an ordinary Web camera is not adequate in
such conditions. Following instructions found on the internet, they turned the Web
camera they had into a simple near-infrared (IR) camera. When they had the IR-adapted
camera ready, they were able to try it with the interactive sketch they had built before,
which revealed that it did not work very well15. The values received from the motion
detector were very low and unreliable. After the initial disappointment, one of the
students had the idea to use an IR light diode to shed more light on the area that was
being monitored. They borrowed an IR diode from another group, and went into a dark
room to test it, with much more encouraging results this time.
 After this they spent the last week in adding more details to their solution, doing
initial tests and preparing their final exhibition. They put the camera and IR diodes within
the mouse toy (Figure 16), and made the processing more complex. They used a script to
map motion intensity into 10 discrete values, created 160 serialized values, and calculated
their standard deviation and average within a spreadsheet.

Fig. 16. “Snoet”, a toy that contains an IR-adapted Web camera and IR diodes that help the camera to “see in
the dark”. The toy is connected to the computer through a USB cable hidden in the tail of the toy.

 It is important to note that the students started their exploration without a clear
understanding of the technology required, and that they did not have a clear idea about

15 The students did not realize that the adapted Web camera is a near‐IR camera, not suitable for “night

vision” as they expected.

Sketching Interactive Systems with Sketchify ● 9: 25

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

what they wanted to build. Nevertheless they managed to produce a functional system,
and they received very positive comments during their final exhibition.

7.2 Case Study 2: The “Medical Assistant” Project
Our second case study describes usage of Sketchify by a third year student of industrial
design for her final bachelor project. The project focused on the development of an
intelligent product to assist nurses in calculating the correct doses of medications. The
student used Sketchify at two stages in the project: to sketch several alternative ideas and
to discuss them with potential users, and to implement a prototype based on the selected
concept. We selected this case to illustrate a joint usage of free-hand sketches and
spreadsheets – a frequently used combination of elements within Sketchify.
 After doing initial studies and interviews, the student was familiar with the required
medical calculations, and her task was to define an interface that would make working
with these calculations more intuitive and more error-resistant. Medical calculations were
easy to implement within the spreadsheet extension of Sketchify, on top of which various
freehand sketches were build and tested. Within these sketches the student explored
various icons for the presentation of calculation parameters, as well as their spatial
arrangement and transitions between them. Figure 17 shows examples of such interactive
sketches. This example contains four freehand sketches with active regions that update
and visualize variables imported and processed within the spreadsheet.
 The student made a number of these projects with sketches, in total creating 20
variations, after which she selected four projects that looked most promising to her, and
organized a small user study with six users. The study was organized as a talk aloud
session, where the users could interact with the sketches, and report which sketches they
preferred and why. These outcomes informed the student about which design was the
most successful one in making the content understandable, and she decided to further
extend this selected design into a more advanced prototype.
 The student also used our environment to implement her final prototype (Figure 18).
Her reasons for doing this were that building the prototype with Sketchify was much
easier and quicker for her, as she was able to implement all functionality within a
spreadsheet, which was a very important criterion as she was not an experienced
programmer.
 Parallel with her work on the software, she also explored how the interaction with the
medical assistant could be made more tangible. For example, she used a prototype
consisting of a touch screen covered by a transparent plastic plate with slider buttons.
When the user presses or moves a plastic button, it is recognized as a mouse click or
mouse move, and interpreted within the visual area.
 The student created most of the freehand sketches with Sketchify using a graphical
tablet, but she also imported some of the sketches that she initially had drawn on paper.
The student’s usage of a tablet input device also showed what hardware configuration
could be necessary to support sketching with our platform. For example, the student spent
most of her time in the laboratory where she was able to combine a tablet input device
with digital pen and a primary screen controlled by keyboard and mouse. She used a
tablet input device and digital pen to work with freehand sketches, but kept open a
spreadsheet in the primary screen to work with formulas, modifying them using keyboard
and mouse.

9: 26 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

(a) Selection of input variables to use
within calculations

(b) Data input (specifying values and units)
for the selected input variables

(c) Transformation of input variables to
other units

(d) Visualization of the result

(e) Variables used to connect drawings
with spreadsheets

(f) Spreadsheets formulas

Fig. 17. Sketches from the “Medical Assistant” project. On a first screen (a) the user selects which elements he
or she wants to specify. On a second screen (b) values and units are specified. These values are stored in the
variables that are imported in the spreadsheet (e). The third screen (c) shows these values, as well as values
calculated within the spreadsheets in order to transform user input into alternative units. The last screen (d)
visualizes these values as a formula, and presents the amount of medication required, as determined from the
calculations in the spreadsheet.

Sketching Interactive Systems with Sketchify ● 9: 27

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

Fig. 18. User interface of the “Medical Assistant“ prototype (left). A transparent plastic layer was used on top
of a touch screen to add tangibility to the prototype (right).

7.3 Case Study 3: Assignment “Sketching Interactive Systems”
With 12 undergraduate students (first to third year), we organized an assignment called
“Sketching Interactive Systems”16. The assignment lasted for 7 weeks, where each week
we organized meetings and discussions lasting 90 minutes, and students additionally
spent one to two hours on individual work. The students were not restricted in terms of
tasks they wanted to support. Rather we wanted to stimulate their creativity in using
various sketching techniques to quickly build rough illustrations of their ideas in the area
of novel interactive systems. The main objective of the course was to let students
experience the design of interactive systems that use various novel interaction modalities,
such as speech and camera-based sensors, but also input from Web services and other
applications. The students did all assignments on their laptop computers.
 We asked students to keep a creative log book in which to write down what they had
learned and to reflect on the techniques they were using. These student logs provided us
with in-depth feedback about how they experienced Sketchify. During weekly meetings
we also promoted sketching as a teaching method. Although we prepared lots of material,
during the meetings we were sketching “live”, taking student discussions into account.
This made our meeting more interactive, and during these meetings the students also
came up with novel ideas.
 In general we received very positive feedback from students. All students, including
the first-year students, managed to incorporate novel interaction modalities in their
projects, and made working interactive sketches. Students produced more than 200
projects with interactive sketches (average 13.4 projects per student, ranging from 6 to 30
projects per student). All students said that they planned to use Sketchify in their future
projects, and some of them used it in their ongoing project, outside the class. Figures 19
and 20 show some of the produced interactive sketches.

16 http://www.vip.id.tue.nl/teaching/dg230_2008/

9: 28 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

Google Newspaper

This sketch illustrates how the output of the
Google news Web service can be presented in a
form that visually resembles a real newspaper. A
user can enter keywords, upon which the sketch
refreshes its content through active regions that
present the result of the Web service search.

Used I/O services: Google news Web service

Lady Bug

In this sketch, a user uses speech to control the
motion of an animated character. In the
background, spreadsheets are used to detect
various conditions, and to control the speed of
the bug motion

Used I/O services: Speech recognizer
Used EUP tools: spreadsheets

Driving Instructor: Machine Emotions

In this sketch, a user can navigate a car on the
screen by means of a mouse or Wii remote. A
script tracks how well the driver is avoiding
obstacles, and turns the number of errors into
events that control the emotions in the face
expression service.

Used I/O services: Face expressions, Wii remote
Used EUP tools: BeanShell scripts

Fig. 19. Some of the early interactive sketches created by students.

In several of their projects students combined I/O services, end-user programming, and
auxiliary tools, without using freehand sketches. For example, with our keyboard and
mouse simulator, one student explored how face motion and speech can be used to
control a range of applications. Moving the head left or right, for example, is an intuitive
way to control walking of a “drunk” character in and online game (Figure 21a). In a more
extended version, the same student also tried out how vertical head motion could be used
in combination with speech to control the iTunes application (Figure 21b). Head motions
are used to scroll the list of songs, and speech to select a genre or to control the playback.

Sketching Interactive Systems with Sketchify ● 9: 29

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

 (a)

 (b)
 (c)

Fig. 20. Various projects using Wii devices. (a) a student exploring two hand interaction using a Wii IR sensor
and two IR diodes. (b) A Wii remote in a wooden box which could detect six discrete states depending on the
rotation of the box (c) a student controlling sound in space using WiiFit.

Fig. 21. Using a face detector and a speech recognizer in combination with screen poking to control
applications. Horizontal face coordinates control the online game (left), while vertical face movements and
speech control the iTunes software (right).

7.4 Lessons Learned
We received very positive feedback from students and designers. The access to
interactive environments and services has been shown to provide useful support for
creating the dynamics and “feel” of interactive user interfaces. Students mostly
experienced problems when using scripting, or when several components of our system
were used simultaneously.

7.4.1 What Worked Well
Our support for freehand sketching, spreadsheets, I/O services, and variables, in various
combinations, proved to be easy to use and understand for all the students.

7.4.1.1 Free Hand Sketching and State Transitions
Almost all students immediately understood how to create freehand sketches, and created
simple interactive sketches by using active regions and state transitions “state transitions
… are the most basic tools that allow for simple interactive sketches … they have been
useful and pretty straightforward" [S5]. Our support for sketching interaction through
state transitions did not require lots of learning and work in addition to creating the
drawings “[they] can make a sketch instantly interactive” [S11] “can help you
communicate your ideas … without too much side-stuff” [S1].

9: 30 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

 Students also appreciated the state transition diagram that was automatically
generated by our tool “by using state transition diagrams it is possible to get an overview
of the system” [S4], and its value in understanding the logic of the interface “in a simple
diagram with boxes and arrows, like a state transition diagram, you can see in a few
seconds the logic thought behind the interaction” [S6]. An additional benefit of such
diagrams is their ability to show the complexity and to identify missing links among
states of the interface “With the state transition diagram I could clearly see which sketch
was linked to another sketch, the diagram also clearly showed where links were missing
or [which] sketches had too many links. It surprised me how fast the system state
diagram could get complicated.” [S3]
 Students also pointed out the need for state diagrams at the level of a single sketch.
That is, our state transition diagram treats a sketch as a one discrete state, but when
variables and scripts are used, a sketch itself can also have quite a complex state
transition diagram, which we currently cannot visualize.

7.4.1.2 Spreadsheets
Not surprisingly, spreadsheets worked well for most users. We think that one of the
reasons is that spreadsheets are similar to free-hand sketches is two aspects. Firstly, they
allow direct viewing and manipulating of data. Changes in formulas and cells have an
immediate and direct effect on all dependent data. Second, they assist human spatial
perception and reasoning: spreadsheets are designed to perform general computation
tasks using spatial relationships rather than time as the primary organizing principle.
Many people find it easier to perform calculations in spreadsheets than to write the
equivalent sequential program [Chang 1990; Shu 1989; Nardi 1993]. The ability to define
a set of cells with a spatial relationship to one another, exploiting users’ natural spatial
perception and reasoning, is one of the key properties underlying the success and
widespread use of spreadsheets.
 The ability to create more complex logic in sketches by including spreadsheets and
scripts was positively appreciated by students. Spreadsheets and scripts allow students to
express and develop their ideas more deeply and elaborately “it gives the sketch a whole
new impulse” [S7], “add[s] a level of intelligence to sketches which is impossible to do
without them … [such as] complex calculations, advanced comparisons, random number
generation” [S4], “sketches can be more complex and it can give users more options and
freedom” [S3], “the user will experience a smarter system that’s able to make
calculations and compare values, because of this I can communicate more complex
ideas” [S5].
 Such elements can also help you to think about important elements of your idea,
“forces you to think about the logic behind your sketch. This can already give an initial
discussion point” [S10]

7.4.1.3 I/O Services
I/O services were very well received by students. In general, students acknowledged that
I/O services have made their sketches more alive and brought them closer to the domain
they were addressing, “[they] can make the interaction with sketches richer and realistic”
[S8], “make a sketch more alive” [S11], “the use of developed or partly developed
software or devices in enhancing the overall experience of a sketch/model” [S2], “opens
a world of new possibilities for more complex behavior of my sketches and it adds an

Sketching Interactive Systems with Sketchify ● 9: 31

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

extra level of realism. I/O services provide a glimpse of how it could be to integrate
complex software input and output devices into my design and they’re quick and easy to
use” [S4] “In combination with the I/O services the possibilities for interactive sketches
are limitless” [S10].

Most of the students encountered the technology used in our I/O services for the first
time. The I/O services helped to deepen their knowledge of interaction technologies
“offers possibilities which I didn’t know they existed” [S4], “they broaden the possibility
of sketching interactive systems” [S5] “enables me to give another approach of
interaction with a device rather than just pressing buttons” [S8]. I/O services also help to
raise more realistic expectations about sensing and intelligent technologies “good to
practice with and to become aware that there are many possibilities … I [also] became
more aware of the complexity of [such] software” [S6]

Students often came with new ideas after being inspired by existing I/O services. “I
created scenarios so when I was creating them I was inspired by the different I/O
services that are currently available” [S10] “It wasn’t really that I started with an idea
and then used the I/O service. It was more creating an idea [that] could have the I/O
service in the sketch. But the I/O services were very easy to use, through the variables
which could be called and changed” [S11]

Regardless of their practical value, one of the students noted that “I/O services were
fun to use” [S6].

7.4.1.4 Variables and the Blackboard: More abstract Approach to Sketching
One of the surprising pieces of feedback of students was their positive acknowledgement
of variables and our interface to them. For us variables are background objects that allow
connecting of components. What we did not realize is that many students never had had
the opportunity to actually perceive live data from sensors or services. With variables,
they could not only perceive them, but could also play with them, e.g. by simply updating
a value in the spreadsheet interface, they could make the results of a service visible.
Seeing how variables changed also provided indirect cues, such as the frequency of
updates, or the amount of noise in the sensor data.

The level of abstraction introduced by variables also enabled students to think in more
abstract and general terms about interaction. Variables helped students to look at human-
computer interaction in a more abstract way. As variables provide a uniform abstraction
of very diverse elements, the students could now think about significantly different
components in identical terms (variables), and consequently realized that there are few
limits to what can be connected “In a more general sense I am now aware that almost
every sensor can easily be connected with the PC and controlled. For example, using a
Phidget set or a library for the Nintendo Wii controller.” [S10] “There are a lot of events,
like clicking with mouse, rotating with mouse, or using the keyboard. Later in the
assignment I also learned about using external devices as triggers, like the Wii controller
or a face detector.” [S6].

7.4.2 What Did Not Work Well
Students did experience several problems when using scripting, or when several
components of our system were used simultaneously.
 Most of the problems that students reported were related to the usage of scripting, and
almost all of them reported some problems and difficulties when working with scripts.
 We identified two main sources of such problems. The first problem was relatively
poor debugging support on our platform, as messages related to script errors were often

9: 32 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

not very informative. This remains an open problem, as for this feature we are relying on
external libraries. The second, and possibly bigger problem, was that scripting requires a
completely different style of interaction compared to freehand drawing and spreadsheets.
In the latter activities, there is more freedom and visibility, and every change causes
immediate and visible effects, which makes identifying errors relatively easy. While in
spreadsheets you can immediately see and manipulate data, scripting is a much more
indirect way of controlling behavior. The user first creates code, saves and reloads it,
which are all processes with potential errors due to the strict syntax that is imposed, and
then tests the script code by changing variables. This caused lots of confusions, “when I
changed something in the scripts, it didn’t instantly work in the sketch. I had to refresh a
lot of things, so that the scripting had effect on the sketch. So I wasn’t sure whether the
scripting was wrong, or whether the scripting hadn’t been saved yet.” [S11]. “With the
scripting I didn’t know if the script worked, because nothing changed” [S9]. The
precision required by script code is also in contrast with the vagueness and ambiguity of
freehand sketches “I found it hard to learn and very time consuming to program. The
code has to be absolutely correct, missing a single dot can result in a program not
working” [S4].
 Some students found that scripting “does not fit” in the overall system “I think the
strength of Sketchify is that it enables us to quickly sketch interactive systems without
having to spend a lot of time on this. … However, scripting in Sketchify is quite difficult
… so you need to spend a lot of time … this is a bit in contradiction with Sketchify’s
strength...” [S8]
 An additional source of confusion was the difference between our variables, and
script variables. This caused problems for some of the students who tried to use Sketchify
variables as if they were declared within the script. We were not able to solve this
problem as we rely on third-party libraries for script support; however we have recently
added an easy copy-and-paste mechanism to the blackboard interface for creating
expressions for accessing our variables from scripts.

7.4.2.1 Problems of Loosely Coupled Integration
Students also pointed out usability problems that they experienced when they were using
the free-hand sketching interface in combination with I/O services, spreadsheets, or
scripts, as each of these elements are stand-alone applications, with their own interface.
“Maybe less screens of everything. When I worked with sound services and scripts, I had
a lot of windows open. It became difficult to find the right one.” [S11] One approach
taken by some students working in our laboratory, such as our second case study shows,
is to use two screens, one reserved for the freehand sketching environment, another for
spreadsheets and I/O services.
 Another problem is that external tools, such as image editors, are optimized for other
tasks, and we can communicate parameters to them only in a limited way. For example,
when students were using Adobe Photoshop to create and process images, they created
images with print quality and a resolution that is much higher than what is required for a
presentation within a sketch. When many such regions are used, this significantly reduces
interaction performance, without improving visual appearance. This problem may be
partially resolved by subsampling the images when loading them into Sketchify.

Sketching Interactive Systems with Sketchify ● 9: 33

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

7.4.3 Other Lessons
We summarize the other lessons learned into a number of categories: need for tools such
as Sketchify, the value in improving the understanding and communication of interaction,
the challenges of introducing complex ideas to users, and the way to cope with scripting
limitations.

7.4.3.1 Need for Tools
The benefits of Sketchify pointed out most frequently were: its practical value in projects,
improvement in the communication of dynamic effects and the feel of interfaces, a more
in-depth understanding of interaction, and the ability to get early feedback from users and
colleagues.
 Our tool has been successfully used in several student projects, and students pointed
out a need for such tools, especially when they had to work in novel domains, and with
special user groups: “Since our users were elderly and the website was kind of confusing
and it was hard to play around with the code to change things. This would have been way
easier with Sketchify” [S1]
 All students expressed their wish to use the tool in their future projects. “I definitely
see me using Sketchify in the future because my vision is to design products that have an
emphasis on rich playful interactions. I think that Sketchify is a good tool to make quick
sketches without having to spend a lot of time on programming” [S8]
 Students also see Sketchify as a good tool for getting early feedback from users. As
Case Study 2 already illustrated, Sketchify enables designers to get early and more
concrete feedback from their users before they make a serious commitment in the
development of their idea. “The users have to use their imagination … which often
results in distorted outcomes of early user tests. By using a tool like Sketchify it is really
easy to make [a system] with which people can interact …. This way you can test
different interaction styles and possibilities early … get reliable feedback on early
sketches …” [S4] In that way you could also check if you understood the user
requirements correctly “you can ask for confirmation if this is the way [s]he meant it.”
[S10]
 Students pointed out that this “also enables to provide others with better feedback”
[S3], that is, “instead of saying ‘I wonder what that would be like’ I can actually say ‘it
works well’ or ‘it doesn’t’” [S4]

7.4.3.2 Improved Understanding and Communication
Students especially appreciated the ability of Sketchify to quickly create dynamic effects,
through state transitions, animations, formulas and I/O services, and its value in
communicating their ideas about interaction. “I’ve seen absolutely beautiful sketches
from people with excellent drawing skills, but as soon as complex movement or dynamics
were involved, the sketches were a bit unclear. Extra explanation was needed for me to
fully understand the ideas. When animated sketches are used, even people without
excellent drawing skills could make their ideas clear to me: I could see in real time the
movement and dynamics of the device, interface or something else that is being
sketched.” [S4]
 In this way, they were able to communicate in a more convincing way “showing the
interactive sketch the product is more convincing for the people at the exhibition” [S6],
and they were able to more convincingly demonstrate the behavior and feel of their

9: 34 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

system “by using external devices like the Wii, I am able to emulate/synthesize the feel of
my sketch/model in a more interactive and natural way” [S2].
 Seeing and experiencing interaction also makes it easier to understand its logic “If you
see the system working it is easier to understand” [S3] “it is easy to understand
interactions when I can experience [them] myself … experiencing interaction is always
better than being told how it works” [S9] “How the idea should work/how you can
interact with it is often vague. By using state transitions, [for example], the viewer has to
use less imagination and the idea and interaction is more specifically visualized” [S10]

7.4.3.3 Introducing Sketchify
Most users were able to quickly understand and adopt the idea of interactive sketching.
However, these ideas needed to be appropriately introduced. Our platform itself does not
impose serious limitations on ordering of actions, which may cause confusion and
overload, as people could hardly grasp all possibilities that are available simply by
looking at the controls, especially not when diverse elements were combined. We
explicitly addressed these issues in two ways.
 Firstly, we created a number of introductory demonstrations. An introductory
demonstration was usually sufficient to make the purpose of our tool understood, and a
short training session enabled people to use Sketchify. A very useful way of introducing
our tool was by means of video tutorials, which all students preferred to written
descriptions. One negative feedback we received from students is the lack of such video
tutorials for all options within the program.
 Secondly, we adhered to the following multilayered design principles [Shneiderman
2003] when creating our tool, implying that functionality and options are gradually
introduced to the users. Users typically start with the freehand sketching environment,
where they learn how to use sketches to create and organize drawings. Subsequently, we
introduced the concept of active regions and sketch transitions. After that, we introduced
variables, and added operations that use variables as a means to dynamically influence
freehand sketches. Once users were familiar with variables, we introduced spreadsheets
and scripts. Last but not least, we showed how functionality could be added by means of
I/O services.

7.4.3.4 Beyond Script Limitations
Some of the students saw the strength of scripting not primarily in the ability to quickly
create a piece of code from scratch, but rather in the ability to reuse already existing and
tested code “I can use code I made earlier … or give it to someone else” [S6], “possible
to implement code from external sources (made by others)” [S4]. One interesting idea for
the future work is to incorporate script templates “script templates might make the
scripting more [like] sketching” [S10], that is, creating a library of parameterized
scripting functions that could be simply imported, and easily changed.
 Another approach we found in several projects is the combined use of very short
scripts and spreadsheets, exploiting some complementary elements of these two
paradigms. For example, students used spreadsheets for most calculations, and scripts for
complex control structures, such as nested IF statements. This is somehow surprising
finding, as it suggests that students were able to combine an assortment of tools in a way
that a “real programmer” never would. While our initial idea of introducing multiple
development paradigms was to enable students to chose among tools, this finding

Sketching Interactive Systems with Sketchify ● 9: 35

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

suggests that students also created a mental model where they where they combine
programming paradigms in a new way.

8 DISCUSSION
As a summary of previous sections, here we discuss the benefits and limitations of our
approach.

8.1 General Benefits of Our Approach
In comparison to existing solutions, our platform has several features potentially
beneficial for sketching of interactive systems, including support for exploration of
complex technologies in a simple way, diversity, both in terms of possible ways to
interact with our platform, and in the range of components being available, and reuse of
existing environments.

8.1.1 Exploring the Possibilities and Limitations of Technologies
I/O services, although “trimmed down” versions of real components, bring “samples” of
new technologies within the reach of the designer. By including such technologies in a
sketch environment, we extended the design space, enabling designers to explore such
services and to develop more realistic expectations about the possibilities and limitations
of the technologies that these services rely on. For example, our students often came up
with innovative ideas after being inspired by the possibilities offered by I/O services,
reporting that they were not aware that such possibilities existed. On the other hand,
designers can easily observe limitations of the technologies, such as the noise in the
sensory data, the errors in recognition, or the delays in the response of Web services. This
may stimulate them to find solutions that can help to overcome such limitations, or to
make them more acceptable, in an early phase of their design.

8.1.2 Diversity of Components
We support many input and output devices, while in addition providing access to many
external software components (see Appendix D for details), such as Web services and
semantic services, which most of the other sketching or prototyping platforms currently
do not support.

8.1.3 Extensibility and Domain Independence
We provide a number of extension mechanisms that can assist in adding even more
external applications in the future. Diversity and extensibility make our platform less
domain-dependent: any software component or service that can be mapped to variables
can in principle be integrated into our toolset.

8.1.4 Reuse of Existing Environments
Our framework uses a range of existing environments. For example, our spreadsheet
support is based on the OpenOffice.org CALC program, our scripting support reuses
already existing contributions of the Java scripting project17, and while our freehand
sketching environment has been built from scratch, it does allow a designer to open
sketches in an alternative image editing program, such as MS Paint, or Adobe Photoshop.
Through our I/O services and links to external environments, we aim to facilitate reuse of
existing software and tools. This enables designers to reuse their skills and knowledge,
which in turn is expected to lead to a faster and more efficient adoption of our toolset.

17 https://scripting.dev.java.net/

9: 36 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

8.1.5 Diversity of Development Styles and Avoiding Proprietary Lock-In
With Sketchify, designers can be creative in selecting and combining their tools and
development styles. Diversity in development styles is also an important requirement
from the point of view of creativity support tools, where the following two basic
principles have been identified as being important for their acceptance [Shneiderman
2007; Resnick et al. 2005; Myers et. al. 2000]:
• "Low threshold, high ceiling, and wide walls". i.e. make it easy for beginners to start

(low threshold), but also enable experts to work on more complicated projects (high
ceiling) and support a wide range of explorations (wide-walls).

• "Support many paths and many styles", i.e. support adoption of different styles and
approaches.

Most existing platforms provide one dominant development style. For example,
electronic sketching tries to enable a user to express as much as possible through
freehand gesturing, spreadsheets facilitate the creation of declarative relations among
cells, Max/MSP allows dataflow specification, Flash supports scripting, and Processing
offers object-oriented programming. We instead enable a designer to choose among and
combine diverse interaction paradigms. Interaction designers can select the paradigm
closest to their skills, or can combine paradigms, switching them when the limitations of
one have been reached, or are no longer appreciated.
 Through its ability to work with diverse interaction paradigms and tools, our platform
can help a designer to avoid the proprietary lock-in issue, that is, being too dependent on
one vendor for products and services and not being able to move to another vendor
without substantial switching cost. In our environment, the same task can often be
realized with different tools, and designers can compare and test the limits of the used
paradigms. For example, in their projects, students have often combined spreadsheets
with scripting, where they have used scripting to overcome limitations of spreadsheets,
especially when defining a control flow (for example, complex if-then-else scenarios).
 An important side effect is that our approach teaches students how to sketch in more
universal terms that go beyond tools, enabling them to think about sketching as a way of
developing ideas that can be implemented by a range of different tools, each of which, as
technology develops, may be subject to substantial changes.

8.1.6 Promoting More Efficient Collaboration between Designers and
Engineers

I/O services open a possibility for a more efficient interaction between designers and
engineers. One of the problems that we have often experienced when designers and
engineers need to work together is that the engineers perceive the ideas of designers as
being unrealistic and not precise enough to be useful. Our I/O services, although
simplified, resemble real components, and sketches expressed in terms of these services
are more likely to be close to the implementation platforms that the engineers use.
Through the exploration of services, the designer can develop more realistic expectations
about the possibilities and limitations of technologies. This interaction between designers
and engineers could work in two ways, where, in the early stages of design, engineers
could provide designers with I/O services, adapting some of the components and services
that they might use later on in the implementation stage. We provide lots of auxiliary
tools that can assist engineers in this process [Obrenovic and Gasevic 2007]. This may
also inspire a more general approach towards building software services and components,
where each service could have two sets of application programming interfaces (APIs),

Sketching Interactive Systems with Sketchify ● 9: 37

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

one engineering API, with full functionality, and one sketching API, representing a
simplified and limited sample of the full functionality.

8.2 General Limitations of our Solution
The approach taken by our platform also comes with some limitations. Firstly, it is
important to keep in mind that our platform is intended for sketching, and that, although
we support a huge range of components and environments, these elements are simpler
than equivalent elements in advanced prototyping and programming environments. We
wanted to enable designers to quickly and roughly sketch interaction, rather than to create
precise and high-fidelity prototypes. To simplify integration of existing software
components, we compromised on issues such as performance or security, which are
important engineering issues that cannot be ignored in the later stages of development. To
summarize, our platform tries to improve diversity and freedom, which comes at the price
of precision. This makes our platform unsuitable for the development of final products,
and of limited use for the creation of real-time high-fidelity prototypes.
 Loosely coupled integration of various environments, as we have adopted in our tool,
can make usage of such tools tedious, especially when compared to a single integrated
environment. This can results in many windows with a non-uniform look-and-feel being
open at the same time. When many modules are used, the number of variables that a
designer has to manipulate can also become significant, and finding the right variable
may become difficult.
 One of the benefits of our platform is extensibility, but adding elements, such as new
I/O services or environments, requires involving people with some programming
experience. We provide integration mechanisms that simplify this integration, but they,
nevertheless, require some programming skills, and most designers will probably not be
able to perform them by themselves. We partially remedy this problem by enabling non-
developers to integrate existing environments through auxiliary “hacking” tools, such as a
mouse and keyboard simulator or a screen scraping.

8.3 Implications for Developers of Design Tools: A Tool as a Service
We would like to encourage developers of new design tools to make their tools open and
easy to integrate and combine with other tools, as the ease with which such tools can be
integrated into existing environments can be equally (or sometimes, even more)
important than the key functionality of their tool itself. Many currently available design
tools mainly support file-based interoperability, i.e., the ability to import and export data
in formats that are recognized by other programs. For supporting tasks such as sketching
this is often not sufficient and a more synergetic and real-time integration of tools is
required. In our experience, a service-oriented approach is a promising direction for more
closely integrating diverse environments and components. Sketchify provides a
demonstration that such an approach indeed allows integrating a diversity of tools and
components, irrespective of the fact that they might be written in very diverse languages
and can rely on different technologies (see Appendix D for details). To make easier
integration of tools and components possible we would like to encourage developers to
include standalone service-oriented examples with their tools. Adapting a tool or a
component to become a standalone service usually does not require changes to the basic
functionality, but instead requires identifying and exporting the key functionality through
one or more open communication interfaces (see Appendix B). Even when a tool is
distributed including source code, using the tool as a service is usually easier than trying
to compile the code within a new application. Building, installing and running open-
source projects as standalone programs is normally a straightforward activity, even for

9: 38 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

those who are not familiar with the technology used by the component (i.e., even though
you do not know Python or Java, it is still relatively easy to install Python or Java
interpreters, and build and run their applications).

Applying a service-oriented approach also simplifies writing extensions for tools such
as Max/MSP or OpenOffice.org CALC, since many of these tools already provide
mechanisms to extend their functionality. Rather than embedding the whole functionality
of Sketchify within such a tool, or vice versa, we have chosen to use a simple
communication protocol, based on reading and updating variables. Such protocols are
easily supported by network connection mechanisms, one or more of which are usually
available within current tools’ extension libraries. Although such networking support has
proven to be sufficient, it is currently mostly provided at a low-level (i.e. in a form of a
socket library18). We would like to encourage developers to also start supporting higher-
level internet protocols, such as XML-RPC, OSC, or HTTP, since this has the potential to
make integration of tools simpler.

8.4 Future Work
In our future work, we plan to concentrate on facilitating design team work, and on
supporting the collaboration of designers with relevant stakeholders, such as engineers,
market experts and end users.
 Our tool is currently conceived as a designer’s personal sketchbook. We also plan to
explore how it could potentially facilitate collaboration between designers, and be used to
develop and document the work of a complete design team. One possible approach is to
create a shared sketchbook, where designers (and engineers) in different roles can view,
annotate, or change the sketches.
 Sketchify has the potential to improve the communication between designers and
other stakeholders in the business domain, as it enables a combination of tools that
designers use (e.g. freehand sketching) with tools that people in the business domain use
(e.g. spreadsheets). One possible approach is to create sketches and prototypes that can be
adapted through spreadsheets, so that a design solution can be adapted to new situations
by non-designers. Another potential is using already existing business knowledge and
logic, captured in spreadsheets, so that designers could build on top of such existing, and
validated, material.

9 CONCLUSIONS
In this paper we have described Sketchify, a tool for sketching interactive user interfaces.
With Sketchify, we extended the concept of paper and pencil sketching towards the more
generic concept of fluent exploration of interactive materials, enabling designers to create
“interactive sketches” that illustrate interaction scenarios or interaction techniques. To
stimulate further research in this direction, our software and other materials are freely
available19.
 We conclude by making two points. First, we support a view that sketching should be
extended beyond the simple creation of a pencil trace on paper to deal with important
attributes of the overall user experience, especially time, phrasing, and feel [Buxton
2007]. Second, some aspects of specifying interactive system behavior are beyond
freehand drawings and we need tools that can seamlessly integrate sketching with more
traditional (end-user) programming techniques. Sketchify demonstrates that the

18 http://en.wikipedia.org/wiki/Internet_socket/
19 http://sketchify.sf.net/

Sketching Interactive Systems with Sketchify ● 9: 39

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

combination of diverse environments can facilitate the development of ideas in a similar
way as more integrated domain-specific sketching tools or paper and pencil sketching
would do, at the same time offering many more possibilities.

10 ACKNOWLEDGMENTS
We would like to thank Berke Atasoy, Javier Quevedo, Bill Buxton, David Frohlich, and
Lynda Hardman, for their comments. We also thank students of Industrial Design at the
Eindhoven University of Technology for their feedback. The authors gratefully
acknowledge the support of the Innovation-Oriented Research Programme ‘Integral
Product Creation and Realization (IOP IPCR)’ of the Netherlands Ministry of Economic
Affairs, Agriculture and Innovation.

11 REFERENCES
AVRAHAMI, D. AND HUDSON, S. E. 2002. Forming interactivity: a tool for rapid prototyping of physical

interactive products. In Proceedings of the 4th Conference on Designing interactive Systems: Processes,
Practices, Methods, and Techniques (London, England, June 25 - 28, 2002). DIS '02. ACM, New York,
NY, 141-146.

BAECKER, R. M. 1969. “Picture-driven animation”. In Proceedings of the May 14-16, 1969, Spring Joint
Computer Conference (Boston, Massachusetts, May 14 - 16, 1969). AFIPS '69 (Spring). ACM, New York,
NY, 273-288.

BAECKER, R. M. 1969. Interactive Computer-Mediated Animation, Phd Thesis, MIT, MAC-TR-61.
BAILEY, B. P., KONSTAN, J. A., AND CARLIS, J. V. 2001. DEMAIS: designing multimedia applications with

interactive storyboards. In Proceedings of the Ninth ACM international Conference on Multimedia (Ottawa,
Canada, September 30 - October 05, 2001). MULTIMEDIA '01, vol. 9. ACM, New York, NY, 241-250.

BUXTON B. (2007). Sketching User Experiences: Getting the Design Right and the Right Design, Morgan
Kaufmann (March 30, 2007).

CHANG S.K. (1990), Principles on Visual Programming Systems, Prentice Hall, New Jersey, 1990.
CHEN, X., KANG, S. B., XU, Y., DORSEY, J., AND SHUM, H. 2008. Sketching reality: Realistic interpretation of

architectural designs. ACM Trans. Graph. 27, 2 (Apr. 2008), 1-15.
DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIĆ, Z., AND SALESIN, D. 2003. A sketching interface for

articulated figure animation. In Proceedings of the 2003 ACM Siggraph/Eurographics Symposium on
Computer Animation (San Diego, California, July 26 - 27, 2003). Symposium on Computer Animation.
Eurographics Association, Aire-la-Ville, Switzerland, 320-328.

DAVIS, R. C., COLWELL, B., AND LANDAY, J. A. 2008. K-sketch: a 'kinetic' sketch pad for novice animators. In
Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems
(Florence, Italy, April 05 - 10, 2008). CHI '08. ACM, New York, NY, 413-422.

DEY, A. K., SALBER, D., ABOWD, G. D., AND FUTAKAWA, M. 1999. The Conference Assistant: Combining
Context-Awareness with Wearable Computing. In Proceedings of the 3rd IEEE international Symposium
on Wearable Computers (October 18 - 19, 1999). ISWC. IEEE Computer Society, Washington, DC, 21.

EDWARDS W. K. 2005. Putting computing in context: An infrastructure to support extensible context-enhanced
collaborative applications, ACM Trans. Computer-Human Interaction, 12(4) (December 2005), 446-474.

FITZPATRICK, G., MANSFIELD, T., KAPLAN, S., ARNOLD, D., PHELPS, T., AND SEGALL, B. 1999. Augmenting the
workaday world with Elvin. In Proceedings of the Sixth Conference on European Conference on Computer
Supported Cooperative Work (Copenhagen, Denmark, September 12 - 16, 1999). S. Bødker, M. Kyng, and
K. Schmidt, Eds. ECSCW. Kluwer Academic Publishers, Norwell, MA, 431-450.

FREEMAN, E., HUPFER., S., AND ARNOLD K. 1999. JavaSpaces Principles, Patterns, and Practice, Prentice
Hall.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1 (Jan. 1985),
80-112.

GRADY, H. M. 2000. Web site design: a case study in usability testing using paper prototypes. In Proceedings of
IEEE Professional Communication Society international Professional Communication Conference and
Proceedings of the 18th Annual ACM international Conference on Computer Documentation: Technology

9: 40 ● Z. Obrenovic and J.B. Martens

ACM Trans. Computer-Human Interaction, Vol. 18, No. 1, Article #, Pub. date:.

& Teamwork (Cambridge, Massachusetts, September 24 - 27, 2000). ACM Special Interest Group for
Design of Communication. IEEE Educational Activities Department, Piscataway, NJ, 39-45.

GREENBERG, S. AND BOYLE, M. 2002. Customizable physical interfaces for interacting with conventional
applications. In Proceedings of the 15th Annual ACM Symposium on User interface Software and
Technology (Paris, France, October 27 - 30, 2002). UIST '02. ACM, New York, NY, 31-40.

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: easy development of physical interfaces through physical
widgets. In Proceedings of the 14th Annual ACM Symposium on User interface Software and Technology
(Orlando, Florida, November 11 - 14, 2001). UIST '01. ACM, New York, NY, 209-218.

HARTMANN, B., DOORLEY, S., AND KLEMMER, S. R. 2008. Hacking, Mashing, Gluing: Understanding
Opportunistic Design. IEEE Pervasive Computing 7, 3 (Jul. 2008), 46-54.

HARTMANN, B., KLEMMER, S. R., BERNSTEIN, M., ABDULLA, L., BURR, B., ROBINSON-MOSHER, A., AND GEE,
J. 2006. Reflective physical prototyping through integrated design, test, and analysis. In Proceedings of the
19th Annual ACM Symposium on User interface Software and Technology (Montreux, Switzerland,
October 15 - 18, 2006). UIST '06. ACM, New York, NY, 299-308.

IGARASHI T. AND ZELEZNIK B. 2007, Guest Editors' Introduction: Sketch-Based Interaction, IEEE Computer
Graphics and Applications, 27(1), pp. 26-27, January/February, 2007.

IGARASHI, T. AND HUGHES, J. F. 2003. Smooth meshes for sketch-based freeform modeling. In Proceedings of
the 2003 Symposium on interactive 3D Graphics (Monterey, California, April 27 - 30, 2003). I3D '03.
ACM, New York, NY, 139-142.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a sketching interface for 3D freeform design. In
Proceedings of the 26th Annual Conference on Computer Graphics and interactive Techniques
International Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley
Publishing Co., New York, NY, 409-416.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002. “The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms”. IEEE Pervasive Computing 1, 2 (Apr. 2002), 67-74.

KARA L.B. AND SHIMADA K. 2007. Sketch-based 3D Shape Creation for Industrial Styling Design, IEEE
Computer Graphics and Applications, vol. 27, no. 1, pp. 60-71, 2007.

KELLEY, J.F. 1984. An iterative design methodology for user-friendly natural language office information
applications. ACM Transactions on Office Information Systems, March 1984, 2:1, pp. 26-41.

KLEMMER, S. R., NEWMAN, M. W., FARRELL, R., BILEZIKJIAN, M., AND LANDAY, J. A. 2001. “The designers'
outpost: a tangible interface for collaborative web site”. In Proceedings of the 14th Annual ACM
Symposium on User interface Software and Technology (Orlando, Florida, November 11 - 14, 2001). UIST
'01. ACM, New York, NY, 1-10.

KLEMMER, S. R., SINHA, A. K., CHEN, J., LANDAY, J. A., ABOOBAKER, N., AND WANG, A. 2000. Suede: a
Wizard of Oz prototyping tool for speech user interfaces. In Proceedings of the 13th Annual ACM
Symposium on User interface Software and Technology (San Diego, California, United States, November
06 - 08, 2000). UIST '00. ACM, New York, NY, 1-10.

KRIPPENDORFF, K. 2006. The semantic turn: A new foundation for design. Boca Raton: Taylor & Francis.
LANDAY, J. A. 1996. SILK: sketching interfaces like krazy. In Conference Companion on Human Factors in

Computing Systems: Common Ground (Vancouver, British Columbia, Canada, April 13 - 18, 1996). M. J.
Tauber, Ed. CHI '96. ACM, New York, NY, 398-399.

LEE, J. C., AVRAHAMI, D., HUDSON, S. E., FORLIZZI, J., DIETZ, P. H., AND LEIGH, D. 2004. The calder toolkit:
wired and wireless components for rapidly prototyping interactive devices. In Proceedings of the 5th
Conference on Designing interactive Systems: Processes, Practices, Methods, and Techniques (Cambridge,
MA, USA, August 01 - 04, 2004). DIS '04. ACM, New York, NY, 167-175.

LI, Y. AND LANDAY, J. A. 2008. Activity-based prototyping of ubicomp applications for long-lived, everyday
human activities. In Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy, April 05 - 10, 2008). CHI '08. ACM, New York, NY, 1303-1312.

LI, Y., HONG, J. I., AND LANDAY, J. A. 2004. Topiary: a tool for prototyping location-enhanced applications. In
Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology (Santa Fe,
NM, USA, October 24 - 27, 2004). UIST '04. ACM, New York, NY, 217-226.

LIN, J., NEWMAN, M. W., HONG, J. I., AND LANDAY, J. A. 2000. DENIM: finding a tighter fit between tools and
practice for Web site design. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (The Hague, The Netherlands, April 01 - 06, 2000). CHI '00. ACM, New York, NY, 510-517.

Sketching Interactive Systems with Sketchify ● 9: 41

ACM Trans. Computer-Human Interaction, Vol. #, No. #, Article #, Pub. date:.

MACINTYRE, B., GANDY, M., DOW, S., AND BOLTER, J. D. 2004. DART: a toolkit for rapid design exploration
of augmented reality experiences. In Proceedings of the 17th Annual ACM Symposium on User interface
Software and Technology (Santa Fe, NM, USA, October 24 - 27, 2004). UIST '04. ACM, New York, NY,
197-206.

MOGGRIDGE, B. 2007. Designing interactions. Cambridge, MA: MIT Press.
MYERS, B., HUDSON, S. E., AND PAUSCH, R. 2000. Past, present, and future of user interface software tools.

ACM Trans. Comput.-Hum. Interact. 7, 1 (Mar. 2000), 3-28.
NAM, T. AND LEE, W. 2003. Integrating hardware and software: augmented reality based prototyping method

for digital products. In CHI '03 Extended Abstracts on Human Factors in Computing Systems (Ft.
Lauderdale, Florida, USA, April 05 - 10, 2003). CHI '03. ACM, New York, NY, 956-957.

NARDI, B. A. 1993 A Small Matter of Programming: Perspectives on End User Computing. MIT Press.
OBRENOVIĆ, Z. AND GAŠEVIC, D. 2007, Open Source Software: All You Do Is Put It Together, IEEE Software,

vol. 24, no. 5, pp. 86-95, September/October, 2007.
OBRENOVIĆ, Z. AND GAŠEVIĆ, D. 2008, End-User Service Computing: Spreadsheets as a Service Composition

Tool, IEEE Transactions on Services Computing, vol. 1, no. 4, pp. 229-242, 2008.
OBRENOVIC, Z. AND GASEVIC, D. 2009. Mashing Up Oil and Water: Combining Heterogeneous Services for

Diverse Users. IEEE Internet Computing 13, 6 (Nov. 2009), 56-64.
OLOFSSON, E. AND SJÖLÉN, K. 2005, Design Sketching, KEEOS Design Books AB, also

http://www.designsketching.com
OWADA, S., NIELSEN, F., NAKAZAWA, K., AND IGARASHI, T. 2006. A sketching interface for modeling the

internal structures of 3D shapes. In ACM SIGGRAPH 2006 Courses (Boston, Massachusetts, July 30 -
August 03, 2006). SIGGRAPH '06. ACM, New York, NY, 12.

PERING, C. 2002. Interaction design prototyping of communicator devices: towards meeting the hardware-
software challenge. interactions 9, 6 (Nov. 2002), 36-46.

RESNICK M. ET AL., 2005. Design Principles for Tools to Support Creative Thinking, Proc. Workshop Creativity
Support Tools; www.cs.umd.edu/hcil/CST/Papers/designprinciples.pdf.

RETTIG, M. 1994. Prototyping for tiny fingers. Commun. ACM 37, 4 (Apr. 1994), 21-27.
SCHMIDT, R., WYVILL, B., SOUSA, M.C., JORGE, J.A. 2005. ShapeShop: Sketch-Based Solid Modeling with

BlobTrees, 2nd Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 53-62.
SHNEIDERMAN, B. 2003. Promoting universal usability with multi-layer interface design. In Proceedings of the

2003 Conference on Universal Usability (Vancouver, British Columbia, Canada, November 10 - 11, 2003).
CUU '03. ACM, New York, NY, 1-8.

SHNEIDERMAN, B. 2007. Creativity support tools: accelerating discovery and innovation. Commun. ACM 50, 12
(Dec. 2007), 20-32.

SHU, N.C. (1989), Visual Programming: Perspectives and Approaches, IBM Systems Journal, Vol. 28, pp. 525-
547, 1989

SNYDER, C. 2003. Paper Prototyping: The Fast and Easy Way to Define and Refine User Interfaces. Morgan
Kaufmann Publishers, San Francisco, CA.

STAHOVICH, T.F., 1998, The engineering sketch. IEEE Intelligent Systems, 13 (3): p. 17--19.
STOLTERMAN, E. (2008). The nature of design practice and implications for interaction design research. in

International Journal of Design, 2(1).
STOLTERMAN, E., MCATEE, J., ROYER, D. & THANDAPANI, S. 2008. Designerly Tools, Proceedings of

DRS2008, Design Research Society Biennial Conference, Sheffield, UK, 16-19 July 2008, article 116.
SUTHERLAND, I. E. (1963), "Sketchpad, A Man-Machine Graphical Communication System," Ph.D. Thesis,

Massachusetts Institute of Technology, Electrical Engineering Department, Cambridge, Massachusetts,
January 1963.

THORNE, M., BURKE, D., AND VAN DE PANNE, M. (2004). Motion doodles: an interface for sketching character
motion. In ACM SIGGRAPH 2004 Papers (Los Angeles, California, August 08 - 12, 2004). J. Marks, Ed.
SIGGRAPH '04. ACM, New York, NY, 424-431.

WALDO, J. 2000. The Jini Specifications. 2nd. Addison-Wesley Longman Publishing Co., Inc.
ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. (1996). SKETCH: an interface for sketching 3D scenes.

In Proceedings of the 23rd Annual Conference on Computer Graphics and interactive Techniques
SIGGRAPH '96. ACM, New York, NY, 163-170.

http://www.designsketching.com/�

	1 INTRODUCTION
	2 EXAMPLE SCENARIO
	3 EXISTING SOLUTIONS
	3.1 Sketching on Paper, Paper Prototyping, and Screen Prototyping
	3.2 Electronic Sketching Systems
	3.3 Platforms for Rapid Prototyping of Interactive Systems
	3.4 Summary of the Limitations of Existing Solutions

	4 SKETCHIFY: SKETCHING AS FLUENT EXPLORATION OF INTERACTIVE MATERIALS
	4.1 Design Goals
	4.2 Conceptual Model
	4.3 Integration and Variables

	5 INTRODUCING INTERACTIVE MATERIALS
	5.1 I/O Services
	5.2 Links to External Development Environments
	5.3 Simple Hacking Techniques

	6 MANIPULATING INTERACTIVE MATERIALS THROUGH FREEHAND SKETCHING AND END-USER PROGRAMMING
	6.1.1 Defining Interaction through Transitions among Sketches
	6.1.2 Presenting Variables through Active Regions
	6.1.3 Updating Variables based on User-Triggered Events
	6.1.4 Sketching as a Visual Coordination Language
	6.1.5 Defining Trajectories and Timers through Gestures
	6.2 End-user programming

	7 CASE STUDIES
	7.1 Case Study 1: The “Snoet” Project
	7.2 Case Study 2: The “Medical Assistant” Project
	7.3 Case Study 3: Assignment “Sketching Interactive Systems”
	7.4 Lessons Learned
	7.4.1 What Worked Well
	7.4.1.1 Free Hand Sketching and State Transitions
	7.4.1.2 Spreadsheets
	7.4.1.3 I/O Services
	7.4.1.4 Variables and the Blackboard: More abstract Approach to Sketching

	7.4.2 What Did Not Work Well
	7.4.2.1 Problems of Loosely Coupled Integration

	7.4.3 Other Lessons
	7.4.3.1 Need for Tools
	7.4.3.2 Improved Understanding and Communication
	7.4.3.3 Introducing Sketchify
	7.4.3.4 Beyond Script Limitations

	8 DISCUSSION
	8.1 General Benefits of Our Approach
	8.1.1 Exploring the Possibilities and Limitations of Technologies
	8.1.2 Diversity of Components
	8.1.3 Extensibility and Domain Independence
	8.1.4 Reuse of Existing Environments
	8.1.5 Diversity of Development Styles and Avoiding Proprietary Lock-In
	8.1.6 Promoting More Efficient Collaboration between Designers and Engineers

	8.2 General Limitations of our Solution
	8.3 Implications for Developers of Design Tools: A Tool as a Service
	8.4 Future Work

	9 CONCLUSIONS
	10 ACKNOWLEDGMENTS
	11 REFERENCES

